
FILE -LCOPY
AD-A219 013 ON PAGE 1e 07fllA "108

1' 'our OW "e'aa'ie.~un tn, tifm. for rev.wsnflq'SVt1 f Wmi a", IW itomni;t "Wt UWft

IMI iqtof "waaGu" fvocgI OtK Orate for IrmYeton OU8ratCflt Au, , el
aqe4.flt ~ ~ or 4fE J0W OW IG rajt it(0 104ISIW.*g.Aurqtn OC 20503.

1. AGENCY USE ON4LY (Leave dank) 2. REPORT DATE I3. REPORT TYPE AND OATES COVERED
I I Final ReDort. 1 Jul 87 thru 31 Oct 89

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

LINEAR PROCRANNING TOOLS FOR INTEGER PROGRAI'IING AFOSR-87-0276
61102F 2304/Bi

L AUTHOR(S)

Robert E. B~ixby

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 11. PERFORMING ORGANIZATION

Rice University REPORT NUMBER

Department of Mathematical Sciences
P. 0. Box 1892
Houston, TX 77251 0~~T 3 1-O "i

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

AFOSR/NM GNYRPOTNME

Building 410
Boiling AFB, DC 20332-6448AFS-706

11. SUPPLEMENTARY NOTES

12a. DISTRIBUDTION /AVAILAUIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved f or Publ ic release
distrib.tiofl unlimited*

13. ABSTRACT (Mammumn 200 words)

There has been significant progress in two areas: solution of the
maximum-weight cut problem and development of simplex-based tools for
integer programming. Codes developed have been widely used to improve
solution time.

SMR 1199

14. SUILECT TERMS 15. NUMBER Of PAGES
3

16. PRICE CODE

17. SECURT CLASSIFICATION 13. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 2(. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE OF ABSTRACT

t_ UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 75SdO.-230.550 Standard Form 290 (Row. 2-89)

P"retwf Amu sts. 19-1S

Final Report on AFOSR Grant #870276

Linear Programming Tools for Integer Programming

Principal Investigator: Robert E. Bixby, Rice University

1 Results on the Maximum-weight Cut Problem

The motivation for this work has been the need for a practical procedure to solve the maximum-
weight cut problem (MCP) in undirected graphs. Our primary focus has been on problems arising
from considerations in statistical mechanics. These problems are typically posed on grid graphs and
some natural variants. Though heuristic methods such as simulated annealing can often provide
optimal or near optimal cuts, they are required to be provably optimal. Our algorithm takes the
availability of good cuts into account. In short, given a cut, we change the sign of the edge-weights
on the cut and attempt to find a positive weight cut with respct to the new edge-weights. If we
find such a cut, we take its symmetric difference with the original cut and repeat the procedure
with the new (and better) cut. If not, the given cut is optimal. The procedure for finding the
positive weight cut requires us to optimize over the cone of the cut-polytope. This optimization
involves approximating the cone by known facet-defining inequalities and solving the associated
Linear Programming problem.

Generating good initial cuts is crucial to the success of our procedure. Presently we heuristically
generate cuts with weight within 10% of optimal. These are obtained by applying neighborhood-
exchange heuristics to random cuts. We are working on generating optimal cuts in a significant
number of instances, perhaps using simulated annealing.

Our next consideration is actually solving the long sequences of generated LPs. We use CPLEX
as our linear optimizer. In our algorithm, the LPs are quite dense and the simplex iterations highly
degenerate: the simplex procedure begins with the 0-solution and stays at 0 till unboundedness is
detected. To help deal with the degeneracy, we solve the dual LPs. Since the dual right-hand-side
is no longer 0, the major problem with the dual is occasional stalling, which CPLEX can deal with.
The dual formulation is made feasible by adding a column of all l's. The corresponding variable x0
is given cost-coefficient 1. The resulting objective function (Min x 0) value provides us with a global
potential indicator: as we approach optimality, it goes down to 0.

The non-zero entries in the LPs correspond to the supports of simple cycle inequalities. Since
the cycles can be long, the resulting LPs are quite dense. Typical densities are around 15%. We
minimize this problem by generating the shortest possible violated cycles and by deleting superfluous
columns. At the end of every call to CPLEX, all columns with non-zero reduced-costs are deleted.
In addition, since most non-basic columns usually have zero reduced-cost, after every few calls to
CPLEX, we delete all non-basic columns. The column deletion scheme is the most time-saving step
in the implementation. Deleted columns are stored in a buffer, so that they can be re-examined
for violation. The column buffering is an important part of our implementation, since checking
violations in the buffer is typically much faster than generating violated inequalities from scratch.

The cycle generation procedure proceeds in three steps. First we examine the buffer for violated
cycles. If none are found, we use a fast heuristic to generated cycles. If the heuristic fails, an exact
method based on Dijkstra's shortest-path algorithm finds all violated cycles. Both the heuristic and
the exact method process the graph in a breadth-first manner, and thus generate shortest violated
cycles. We are presently looking for heuristics to identify facet-defining inequalities corresponding
to homeomorphs of K5. These arise in considering toroidal grids.

As input to our cutting plane algorithm, we have primarily used planar grid graphs. In addition,
we have considered graphs made up of planar grids with a universal vertex. The grids have ±1
edge-weights. Presently we are considering toroidal grids (with ± 1 edge-weights) and planar grids
with edge-weights drawn from a Gaussian distribution. These cases correspond to different models

gP s 1 1

in statistical mechanics.

Preliminary computational results have been encouraging, e.g. we can now routinely solve the
MCP on 900 node grids with ±1 edge-weights. We have used the MIPS M-120 and SUN 3/50
computers for the C-language code development. We present timings obtained on the MIPS at
optimization level 02. The column headings in the table are the following:

Graph Planar grid or planar grid with universal node (grid+l).
IVI Number of nodes.
JEl Number of edges.
Heuristic Value of heuristically generated initial cut.
Optimal Value of optimal cut.
Time Total Time to optimality in seconds (from initial cut).
Stages Number of stages (intermediate cuts generated).
LPs Number of LPs solved.
Columns Number of columns generated in the dual.
Proof Time to prove optimality (from optimal cut).

Summary of Preliminary Computational Results

I Graph FTVI l J 1'-uristic I Optimal I Time I Stages LPs Columns [Proof
grid 100 180 73 73 2.0 1 13 218 1.6
grid 100 180 56 58 5.0 3 46 334 2.2
grid 225 420 131 141 34.6 6 111 1039 4.4
grid 225 420 142 155 25.9 5 76 797 6.4
grid 400 740 229 250 162.4 8 262 2371 33.2
grid 400 760 253 270 91.2 8 184 1490 27.8
grid 900 1740 565 615 1905.3 18 834 8649 176.0
grid 900 1740 557 614 19926 17 971 8335 225.8

grid+1 401 1160 18886 20279 11392.2 12 983 7444 941.2
grid+1 401 1160 535 542 1 693.4 7 1139 6003 212.4

The results are to be part of a Ph. D. thesis by Sanjay Saigal expected to be completed by June
1990.

2 Tools for Integer Programming

The purpose of this work has been to develop simplex-based tools for integer programming. One of
our principal goals has been to place a usable linear programming "black box". called CPLEX, in the
hands of several people who are doing important integer programming research. These people include
Francisco Barahona at the University of Waterloo; W.C. Cook at Bell Communications Research;
Karla Hoffman at George Mason University; George Nemhauser of Georgia Tech; Manfred Padberg
of New York University; Laurence Wolsey of CORE in Belgium; and, very recently, Herbert Scarf
of Yale University.

In several of the cases mentioned above, the availability of a fast, robust LP solver has been
essential to progress. For example. Karla lHoffman and Manfred Padberg have continued the work
on sparse 0/1 problems begun by Crowder, Johnson and Padberg. Improvements by factors of up
to 100 and more in the LP solution times have allowed them to change the order of magnitude of
the sizes of problems that they cai nyl. In addition, their recent work on some very difficult
set-partitioning models may well ii,,t haie been possible without the availability of CPLEX.

The conceptual design used by ('IiI'X as an integer-programming tool has been further de-
veloped in an attempt to develop a standard interface and to simplify the demands on the integer
programming calling routines.

In the standard (or more standard) design, t.n LP is loaded into a system, solved, information
retrieved, the problem possibly changed, and the process is then repeated. In the CPLEX design,

2

once the problem has initially loaded, the management of the problem data is essentially taken over
by the CPLEX tool. Thus, for example, if a problem is modified by adding additional columns, then
this is done through function calls, without explicitly reloading the entire problem. In the process,
the basis factorization from the previous optimization is retained. If the optimizer is then called,
it begins not only by using the old basis (which is standard) but without having to refactor the
basis. If, as frequently happens, the number of iterations in this reoptimization is very small, then
total solution time can be improved by a factor of 2. Further improvements along these lines are
envisioned.

There have been numerous improvements in the performance of the basic optimizer, several of
which are directly related to integer programming. The most notable of these is a method for dealing
with stalling, or long sequences of degenerate iterations. This phenomenon is particularly prevalent
in combinatorial optimization problems, many of which exhibit "strong integrality" in their LP
relaxations.

There are a number --f ,vc!' !-- -.wn devices for dealing with stalling, and degeneracy in general.
The device that has been introduced into CPLEX is a very simple one that does not change the
basic algorithm, but rather changes the problem. As such, it is a general-purpose method that
can be employed in conjunction with any optimizer, and can thus be used in existing systems. It
works as follows: When stalling is encountered, a pseudo-random perturbation of the nontrivial
upper and lower bounds of each structural variable is introduced. The perturbation is of the form
lower-bound-j - EX, upper-bound-j + cX, where epsilon is in the range 10- 3 to 10-8, and X is a
random variable uniformly distributed on (0,1). Problem feasibility is preserved, but at optimality
the perturbation must be removed. If the basis that has been found is feasible, then it is optimal:
otherwise, additional iterations are required. Remarkably, in most cases, the basis optimal for the
perturbed problem is optimal for the unperturbed problem (for properly chosen C).

A paper is currently being written describing the basis features of the CPLEX linear optimizer.
Following completion of that paper, a second paper will be written (with E.A. Boyd) describing the
special features for integer programming.

Additional work that is currently under way includes the following:

1. (with Russell Rushmeier) Development of a parallel implementation of branch-and-bound on
an appropriate distributed memory architecture.

2. (with Matthew Saltzman) Basis recovery methods for interior-point methods.

NTIS GRA&I
DUIC ?ANUnemnoinoed 03

.Distibution/ ,

A3llablty Codes

3

